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SOLAR ATMOSPHERIC DYNAMICS

I. INTRODUCTION

The goal of this research is to study solar atmospheric waves and their

role in heating the chromosphere and corona. To this end we are calculating

the propagation of radiating acoustic shock waves and their effect on solar

spectral lines. The ability of acoustic waves to heat the corona has been

cast into doubt because they are not observed to carry sufficient energy into

the transition region and because the corona is observed to consist of magnetic

flux tubes. To clarify this issue we have made detailed theoretical studies

of acoustic wave flux and heating of the chromosphere and are developing a

"modal" code to calculate magnetic type wave propagation. As a preliminary

step we have studied the wave vector surface of Magneto-Acoustic-Gravity Waves.
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II. RADIATIVE SHOCK DYNAMICS

The development of computer codes to study radiating shocks was begun.

These programs will be applied to study the heating of solar and stellar chromospheres

by acoustic waves and the detailed analysis of spectral line profiles in the

presence of acoustic waves. The first stage in this project was the development

of a grey-LTE-continuum radiation hydradynamic code, which is described below.

fhe dynamics is determined by the equations of mass and momentum conservation.

Conservation of Mass:

aR 1,
am - p

where m is the mass column density of position R.

Conservation of Momentum:

at am

where Q is an artifical viscosity to stabilize the numerical calculations.

= _U 2 2 if o

Q : p(ax) .. ax
0

otherwise

where L is a constant with the dimensions of a length.

Velocity U and position R are related by

R-- = U.
at

These equations are solved by dividing the atmosphere into layers of given

mass column density AmJ+112 = mj+ I -m ; and transforming the differential

equations into finite difference equations on this Lagrangian grid (Christy,

1964; Richtmyer and Morton, 1967).

The velocity Un112 and position Pn are defined at the zone boundaries,

with the velocity at the half integral times tn+1/2 tn +1/2 At and the

position at the integral times tn. All the other variables are defined at
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the zone centers j+l/2 and integral times t
n . The finite difference equations

n~l/2n+.

are solved explicitly for Uj n then n. 1 en p n+ a
n+l/2

j+1/2 by making a sweep through the grid and solving the finite difference

equations in the following order:

First solve

1n2
n+1/2 A U n-  pn n n-1/2 n-1/2U - U Pj+1/2 -Pj-_I12 + Q j+1/2 - QJ-i/2

Atn Am.

for the velocity U n+1/2 j = 2 ..... N-1, where Am. = 1/2 ( AmjiJ/ 2 + Amj-1 /2)

and Amj+/2 = mj -mi and Atn = 1/2 Atn+1/2+ Atn - 1/2 ) and Atn+I/2  t - t

Second solve

Rn+l n n
S : U.n+ I/2

Atn+1/ 2  j

for the position of the zone boundaries R.n+l, j = 1 ...... , N. Third solve

R n+l .n+l
j+l - 1

Amj+ 1 1 2  P n+l
j+1/2

n+l .

for the density PJ+1/2 i =. ...... , N-I. Finally calculate the new artificial

viscosity

n+1/2 n+l n u n+1/2 U n+/2) 2
j+j+/2 +  j+/2 (j+1 -

when P n+l > P n

j+1/2 j+i/2

= 0 otherwise.

We take W 2. The velocity must be specified at the two boundaries. We

use a piston at the lower boundary

n+1/2 n+1/2
U1  = Asin ( wt

and a transmitting upper boundary

Un+1/2 Un-I/
2 + (Un-1/2  Un- 1 /2 n_ Atn / (R - n)

N N N-1 - N N 12 N_1
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where S = YP/P is the sound speed.

The thermodynamics is determined by the equations of energy conservation,

radiative transfer, and LTE ionization.

Energy conservation:

+  (P+Q) (1) :4 (J-B) -

where E = 3/2 nkT/ p + x X H/m is the thermal plus ionization energy per

unit mass, and n is the total particle density, x is the fractional ionization,

x is the ionization potential and m is the mean mass per particle. The

conductive flux is F = 7.6 x l0
-7 T5 /2 dT

Transfer equation:

I - [77 1 -- - (J-B)

where K is the absorption opacity and a is the scattering opacity, and

= 1/3.

Saha equation:

x(x+fA) ¢ (T) K - T3 / 2  -1 - /kT
l-x - :T m e X

where K = 0.333368 for hydrogen and fA is the fraction of electrons from heavier

elements (assumed fixed).

These equations are solved in finite difference form on the same grid

as the dynamics, implicitly and simultaneously be Newton-Raphson itleration

(complete linearization). The finite difference equations are:

Energy:

E n+l - E n F n+l + n+1/2] 1 1
J+l/2 j+/2 j+l12 ( n+j+112 Jn+l n

j+112 Pj+112

Hn+l A t n+1/2
j+112=
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where the heat input is Hj,1/ 2  4 4 j+l/2 (Jj+l/2- Bj+1/2 -F.
Amj/2

j+112

and the conductive flux is

. l/+ P
F. - C.1/2 (x + x j+I/2 j-112

j+1/2 j-1/2 Amj+12 + Amj-/2

Tj+1/2 + Tj-112 5/2

2 / j+ 2 - j-112

The boundary conditions on the flux are that C 0 below the temperature minimum

and FN- 1 = 0 or TN-3/ 2 = TN_1 12 at the upper boundary.

The number density of particles is

n nH {l+x+B+A(l+f)}

- p {l+x+B+A(l+f)} /mH (l+4B+w)

= p {l+x+B+A(l+f)} /-m

where B is the ratio of helium to hydrogen by number, A is the ratio of heavier

elements to hydrogen by number, w is the mean atomic weight of the heavy elements

times A, and f is the fraction of electrons from heavy elements. The total

internal energy per unit mass is

E = Eth + Eion

Eth 3/2 L T {l+x+B+A(l+f)}

E - 1.58 x 105 OK
ion mn ion x, ion k

Transfer:

j+3/2 j+1/2 - j+1/2 Jj-i/2 j+1/2 - B 0
AT+ 1  AT 2 j+1/2 j+I/2

where A T..A
J+l/2 = )j+l/2 Amj+l/2

AT. = 1/2 ( AT j+l/2 + AT jl 2 )

A 2 = 1/3

)= ( p,T) from table

B -- T4

iT
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The upper boundary condition on the radiation field is no incident radiation,

so
JN-112 - N-3/2

AT N -1/2 (JU-1/2 + JN- 3/2
) + BNu1/ 2  AT N-12N-I Nl2

The lower boundary condition is

S3/2 = B3 / 2

that is an adiabatic first layer.

Saha:

Xn+l - 2 P/ {' +Af+ (M +Af)2 + 40}= 0
j+i/2

where P K (k/m) p T3 /2 exp( X/kT)

and K = 0.333368, X/k = 1.58 x 105 °K.

These three equations are solved by linearizing them in the corrections

6T, J, and x, and solving the resulting block tri-diagonal system for

these corrections.

After the new temperature distribution is obtained, the Saha and transfer

equations are solved for the ionization x and mean intensity J consistent

with that temperature distribution. The formal solution of the transfer equation

involves sums of large terms ( AT )- and small terms ( AT) at small optical

depth and in the usual tri-diagonal Gaussian elimination scheme all significance

would be lost. Therefore to be able to carry the calculations out to optical

depths as small as the smallest machine floating point number the elimination

scheme was modified as follows: The transfer equation has the form

A + B. Ji + C i Jl= Dii J- i + i.~

The usual procedure is to calculate elimination matrices

E l1  (Bi + Ai E il)~ici and F i+= -(Bi + Ai Ei I  (D i + Ai F i1),

where these are then used to back substitute for the

Ji i Ji+l + Fi"
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At small optical depth the radiation field is nearly constant and Ei nearly

the identity matrix 1. It is therefore possible to gain accuracy by working

with a matrix c equal to the difference between Ei and 1.i1

That is, let

1 : -E.
i 1

Ji = (1l i Ji., +  F i

The relations to calculate and Fi are found by substituting this equation1

into the difference equation. The result is

C Bii I -- Ai i-i i-1)

1

F. (Bi + A. - Ai  Di + Ai Fi-1)

The large terms in the sum Bi + Ai + Ci are cancelled analytically.

1 1 1t--i '
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III. WAVES IN THE CHROMOSPHERE AND TRANSITION REGION

Acoustic pulses are seen in the transition region (AFGL-TR-77-0108),

but observations of line widths seem to rule out sufficlent acoustic Iux

to heat the upper chromosphere and corona (Athay and White, 1978; Brunner

and McWhirter, 1979). Dr. Jorge Vernazza and I have studied the propagation

of acoustic waves through the solar atmosphere, and we find that indeed, acoustic

waves with velocity amplitudes consistent with the observed wave velocity

of I Km/s at the temperature minimum can not carry sufficient energy to

the transition region and the corona to heat them.

We have used a one-dimensional Lagrangian fluid dynamic code, including

both electron conduction and optically thin radiative losses (a la Cox and

Tucker, 1969) in the energy equation. The waves were driven by a sinusoidal

piston in the convection zone, 1.5Mm below c 5000 1 1, and propagated through

an empirical solar atmospheric model (Vernazza, Averett, Loeser, 1973).

The most surprising result we found was a resonance at 195s period, where

the velocity amplitude of the waves at the temperature minimum for a constant

driving piston amplitude became very large (Figure 1). This resonance occurs

near the acoustic cutoff frequency appropriate to the temperature minimum,

but actually seems to have a more global structure and may be the chromospheric

mode found by Ando and Osaki (1975). This "200s", "chromospheric" mode extends

higher up into the atmosphere than longer period modes and is responsible

for the change over in the dominant oscillation frequency from about 300s

to about 200s as one goes up in the chromosphere (Figure 2). Both the driving

frequency mode and the "200s" mode are excited, but the amplitude of the long

period oscillation decreases rapidly with height above "r = 1, while the amplitude

of the "200s" mode is nearly constant with height until the top of the chromosphere.

Oscillations with periods greater than 200s excite this "chromospheric" mode,



so in the upper chromosphere only this "200s" mode is observed. Oscillations

with periods shorter than 200s do not excite the "chromospheric" mode and

have large amplitude in the upper chromosphere.

The implications for coronal heating of our results, are that acoustic

waves of all periods, 50s < P <300s with velocity amplitude < 1 km/s at

14 2
the temperature minimum carry < 2xlO ergs/cm s into the transition region.

This is an order of magnitude less than the required energy input into the

corona (Figure 3). Even increasing the driving amplitude does not significantly

increase the acoustic flux in the transition region. Rather larger driving

amplitudes lead to greater wave dissipation in the upper chromosphere (Fig,'re

4).

Hence, on both observational and theoretical grounds acoustic waves are

ruled out as the energy supply for the corona. The heating of the uppfir'

chromosphere is still an open question. Magnetic fields clear-y play a role

in the structure of the upper chromosphere. But, the nature of that role

is as yet unclear. Magnetic fields may alter the wave generation, tne ceril'-

change the types of waves that can propagate and their propagation ann

properties, finally the field channels heat conducted back down from *Lie corona

to about 20,O00K. On the observational side, the large Ca II and Mg II emission

is confined to the regions of strong magnetic field in the network. However,

Ca II H and K bright points on the blue side of the line are fairly uniformly

distributed over the solar disk throughout the interiors of cells, and are

likely due to upward propagating acoustic waves. As one step in exploring

the effects of magnetic fields we have calculated the shapes of wave-vector

surfaces for magneto-acoustic-gravity waves.

iI
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IV. MAGNETO-ACOUSTIC-GRAVITY WAVES

The solar corona and chromosphere require some non-thermal energy input

to heat them. This energy must be transported by motions: either wave or

quasi-static. These motions are produced either directly by the turbulent

convective velocity field or by some type of thermal overstability. Typical

times scales are comparable to or longer than the natural buoyancy time scale,

so that gravity significantly influences the motions. Because the atmosphere

is compressible, gas pressure influences the motions as well. We also know

that the structure of the corona is controlled by the magnetic field, which

must therefore play a crucial role in the process of energy transfer and

dissipation. Dissipation likely takes the form of current dissipation

in the ionized corona, but the energy that drives these currents must be

transferred from the convective zone to the upper atmosphere by wave and

quasi-static motions. (Except for currents carried up into the corona by

emerging flux, which is a transient phenomena.) Hence the energy transport

process will be significantly influenced by three forces: pressure, gravity

and magnetic. Nelson Hartunian and I explored some of the propagation properties

waves under the influence of these three restoring forces: magneto-acoustic-

gravity (M.A.G.) waves. We know that acoustic waves are incapable of supplying

sufficient energy to heat the corona. Can the broader class of MAG waves supply all

the non-radiative energy input needed to heat the corona?

Before venturing into calculations with the full MAG wave equations,

an understanding of the wave properties in the WKB limit is a helpful guide.

We have restricted our attention to the case of constant sound speed s and

Alfven speed a. This is unrealistic. While an atmosphere can
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have constant magnetic field B and temperature T, an atmosphere in hydrostatic-O

equilibrium must have density p decreasing outward, so the Alfven speed

a = B / (47rp) will increase outward. By neglecting the variation of Alfven
0

speed, we restrict ourselves to the local dispersion relation (McLellan and

Winterberg, 1968). This is valid only for wavelengths small compared to the

density scale height. On the Sun we are interested in waves with wavelengths

comparable to the scale height, so we must integrate the full wave equation.

However, the local dispersion relation is already complicated, and a picture

of its properties will be a useful guide in the full calculations. The

variation in Alfven speed with height was considered by Yeh (1974), but he

only examined the special cases of horizontal and vertical magnetic field.

The local dispersion relation has been studied for special cases by several

authors. Bel and Mein (1971) and Bel and Leroy (1977) have discussed the case

of vertical propagation and derived the variation of the acoustic cutoff

frequency with magnetic field strength and direction. The special cases of

propagation either in or perpendicular to the g-B plane and vertical or

horizontal B have been discussed by Chen and Lykoudis (1972, Michalitsanos-0

(1973) and Nakagawa, Priest and Wellck (1973). We consider the general

case and study the wave vector surfaces of the local dispersion relation

for magneto-acoustic-gravity (MAG) waves to gain insight into the

behavior of these waves. The wave vector surface is the

three dimensional locus of the real part of the wave vector for all waves

at a given frequency. The wavelength is given by IRe k = 2n/X, so, for

example, small wave vectors correspond to large wavelengths, and since the

phase speed is c = w/I Re k I , waves with small wave vectors propagate

rapidly. Each type of restoring force tends to give the wave vector surface

a distinctive shape as we discuss below. We illustrate and discuss the
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wave vector surfaces of MAG waves in general cases in the next section.

Analytic results for limiting cases of (i) high frequency, (ii) vertical

propagation, (iii) large horizontal wave vector k1L , and (iv) horizontal

magnetic field are derived in an appendix. The principle results are:

(1) At high frequencies, where buoyancy is negligible, MA(; waves behave

like magnetohydrodynamic (MHD) waves. (2) At low frequencies in a

weak magnetic field there are both a gravity fast rrode. and a magnetic slow

mode, but these exist only for small wave vectors. At large Ik' both

their wave vector surfaces degenerate into planes through the origin

in k-space perpendicular to the magnetic field. (3) At. low frequencies

in a strong magnetic field there is a magnetic pressure fast mode with

spheroidal wave vector surface about the origin in k-space. The gravity

mode is suppressed except for directions nearly perpendicular to the

B - g plane or for nearly vertical magnetic field. Away from the origin-0

both modes' wave vector surfaces become planes through the origin in k-space

perpendicular to the magnetic field. (4) There is a critical frequency

separating high from low frequency behavior, which results from the density

stratification of the atmosphere. The horizontal compnonent of the magnetic

field increases the density scale height and thus reduces the critical

frequency.
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A. WAVE VECTOR SURFACES

The local dispersion relation for magneto-acoustic-gravity (MAC)

wave if2 (k " Bo ) 
4 awav f - 0 4_j - s2 + a2 k 2 )_ iYg.k (1)

Sk22 + 2 2 (k Bo) (g. B)
+4Tp +0-1)gk - 0 0J = 0

(McLellan and Winterberg, 1968). Here B is the unperturbed magnetic
-0

field, p is the ambient density, k is the horizontal component of the

wave vector k, s (yp /p is the sound speed, a = B /(4Trp) is the
-0 0 0O

Alfven speed, and y is the ratio of specific heats. We solve this for

k (w, g, B). The first factor is quadratic in k and represents the usual

Alfven waves, which we discuss no further. The second factor is quartic

in k and represents the MAG waves. In the limit of zero magnetic field it

reduces to the dispersion relation for acoustic-gravity waves. In the limit

of zero gravity it reduces to the dispersion relation for magneto-hydrodynamic

(MHD) waves, and in the limit of zero compressibility (y, s, H = p0 /Po 0

it reduces to the dispersion relation for magneto-gravity waves.

The wave vector surface is the three-dimensional surface of those

values of the real part of the wave vector, Re k (w, g, B ), that satisfy the

dispersion relation for a given frequency w. Energy propagates perpendicular

to this surface. We will study three-dimensional pictures of the wave

vector surface and two-dimensional slices through the surface to help

clarify its shape. One can recognize the type of wave mode from the shape

of its wave vector surface. Where pressure is the dominant restoring force

(acoustic or magnetic pressure modes), there is no preferred direction and

the wave vector surface is a spheroid about the origin in k-space.

__ _ _ _ _ i
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Where buoyancy is the dominant restoring force the vertical (-g) is the

preferred direction. Gravity produces a characteristic acceleration for

each direction of fluid displacement. Each direction of motion therefore

corresponds to a particular frequency. Because the fluid is not compressed

the motion is transverse, k. u = 0. Since at any given frequency motion is

possible only at a single angle to the vertical, the wave vector must make

the complementary angle to the vertical and the wave vector surface is a cone

of revolution about the vertical axis. Where magnetic tension is the dominant

restoring force the magnetic field B , is the preferred direction. Magnetic

field lines act like rubber bands under tension. Waves are transverse and

propagate along the field lines with a characteristic speed equal to the

square root of the tension divided by the density. The wave vector surfaces

are planes perpendicular to B 0

The character of the MAG waves depends on their frequency and the

magnetic field strength. Frequency is scaled by N = yg/2s, the acoustic
ac

cutoff frequency in the absence of a magnetic field. For high frequencies,

w/N >i, gravity is unimportant because the fluid acceleration is muchac

larger than g, so the waves behave as fast and slow mode MHD waves (see appendix

eqns A4, A5). Acoustic waves cannot propagate at frequencies below the acoustic

cutoff frequency. For low frequency waves, w/N <1, gravity is significant.
ac

Magnetic field strength is paranetrized by the ratio of Alfven to sound spLeds,

a/s = (B° /4yp o) = (P mag/Pgas) For weak fields we expect to find an

acoustic-gravity mode plus a slow magnetic mode. For a strong field, we

expect to find MHD waves in the high frequency limit and a new situation

where all three restoring forces are important in the low frequency limit.

We now consider these cases, starting with the simplest situation - high

frequencies, where gravity is unimportant. Detailed analytic results are

derived, where possible, in the appendix.

1. High Frequency

High frequency means frequency above the acoustic cutoff frequency, where

gravity is negligible. In the absence of a magnetic field the acoustic cutoff is

N = yg/2s = s/2H, (2)

ac

where H = Po/pog is the pressure and density scale height. A magnetic field

reduces the acoustic cutoff frequency because it increases the scale height.

(A cutoff marks a transition between waves that propagate vertically and those

that don't, but instead vary exponentially with height.)
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Three dimensional pictures of the wave vector surfaces for frequencies

above the acoustic cutoff frequency are shown in figures 5 and 6 for the

cases of strong and weak magnetic fields resectively. Cuts through the wave

vector surfaces at 450 to the B -g plane are shown in I igures 7 and 8. In

both cases, as expected, the surfaces look like the usual MHD surfaces

because for j N the effect of gravity is negli ible. 'hit spheroidalaIc

wave vector surface near the origin is the fast mode and the planar wave

vector surfaces on either side of it are the slow mode. in a weak

magnetic field: the fast mode is an acoustic mode and has a cutoff

frequency, below which it ceases to propagate. The slow mode is a magnetic

tension mode and propagates for all frequencies, so it has no cutoff

frequency. In a strong magnetic field: the fast mode is a magnetic

pressure mode and propagates for all frequencies, so it has no cutoff

frequency. The slow mode is a one-dimensional acoustic wave propagating

along the magnetic flux tubes and has a cutoff frequency, below which it

ceases to propagate.

The acoustic cutoff frequency can be found by considering the special

case of vertical propagation (see Appendix and Be] and Mein, 1971; Bell and

l erov, 1977). In the weak field limit, the fast mode has the cutoff

fr.qupency (eqn. A12)
/( 2  2 20)ac = N + a sin 9) s>a. (3a)

ac ac

Below this critical frequency the fast mode becomes an Internal gravity mode.

In the strong field limit, for a non-horizontal magnetic field, the slow

mode has the cutoff frequency (eqn. A20)

. = N cosO, a>s, < jr/2. (31)ac ac

Here 0 is the plar angle of the magnetic field B . Below this critical

O

frequency the slow mode does not propagate except in a few special directions.
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The minimum value of the acoustic mode cutoff frequency for any magnetic

field strength occurs for a horizontal magnetic field and is (A22, A43)

2 2'iw =N s/(s + a2). (3c)
ac ac

These result on the cutoff frequency must be treated with caution, because

the WKB approximation is invalid near the cutoff.

The acoustic mode has Im k = -i/2H (fig 8b, and eqns. A12, A19, A38), asZ

we would expect Crom our experience with acoustic-gravity waves. The

magnetic mode has Im k = 0 (fig 8b, and eqns. A14, A16). These are generalZ

properties, that are approximately true for all magnetic field strengths.

They are a consequence of energy conservation. The wave energy flux,2
F u2 V pu s (acoustic)F group u2(4

Pu a (magnetic),

must be constant with height. For acoustic waves in an isothermal

atmosphere, where s = constant,

P - -z/2H. 
(5)

The WKB expression for the velocity amplitude is

- ikz

u Ik e z, (6)

and

k I = u/s = constant, (7)

so

Im k = - 1/2H (acoustic). (8)
z

For magnetic waves,

'-2 z/2H (9)

so

-1/4 (10)

II
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but

k w./a (11)

Hence the height variation of the velocity aisplitude of magnetic waves is

4,
due to the variation oi k and. not the exponential iactor, so

I m k 0 (magnetic). (12)

')ifferenc modes wiU coI oe wit,- each1 other hte. h ir frequenie 4s :,d

wavelengths .tre the samo,. For large ; k ; tlier. is sit most o'ne .:pwardin,

r~r~;ain~wovet, so no -' :;Iini c- oc sir. !)L' s~s

co II., is sonc, imes P )ssible. :r magneti. .Od a;,oustir .cs . (2 ave

in Urse.-i u ware v < C surfaces oon a> 015- 0idu tt li, -it i n ,r

-O "etlcaily propagaCing, waves. it, couplin-: condition ran : I ouild by

equacir..; tho xpresIion. ;.r the .: ; !.artc . the ast i-. .ioe wave ve, ,r

(eqr s. Ain and AlgY, and ooIvinr 1 Sr u, Re. k.,nant coupling occurs, when

>-s, for

W / =dcosF (1 *- cos 2 0/a 2 ,

(13)

k Cost s
z 2H a

that is tor (A slightly above the cutoff frequency and wavelength larger

than the scale height. Bei and Leroy (19773 have obtained corresponding

results for a vertical field of arbitrary strength.

-ILi
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2. Low Frequency

We now turn our attention to the more interesting but complicated case

of low frequencies where all three forces are significant.

(a) Weak Magnetic Field

In a weak magnetic field one mode must be a gravity wave and the other

a slow mode magnetic tension wave, in order to go continuously to the limit of

acoustic-gravity waves in the absence of a magnetic field and MHD waves

in the absence of gravity. This is indeed the case, as shown in the three-

dimensional wave vector surface pictures (fig. 9) and slices through the

wave vector surface in figure 10. There are some modifications, however. First,

the gravity mode hyperbola is cut off near the Alfven planes. This

is similar to the wave vector surfaces of magneto-gravity waves (Lighthill,

1967; Schwartz and Stein, 1975). Second, the slow mode wave vector surface

has a bulge away from the origin in the vertical direction, rather than a

dimple toward the origin in the magnetic field direction as found in MHD waves.

Third, at large horizontal wave vector, k >>w/min (s, a), both modes wave

vector surfaces become planes perpendicular to the magnetic field direction

whose extensions pass through the origin. This can be seen most easily from

the analytic results derived in the appendix (eqn. A40) and from slices through

the wave vector surface when the magnetic field is nearly vertical (fig. 11).

When a wave vector surface becomes a plane through the origin perpendicular

to the magnetic field, its group velocity goes to infinity, since k is

independent of w, and its potential energy becomes much larger than its

kinetic energy. This occurs below the critical frequency

= Ncos6 (14)
c
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(A36, where N = (y-l) g/s is the Brunt Vaisala frequency) for both the fast

gravity and slow magnetic modes at sufficiently large

k " The propagation direction perpendicular to the B - g plane is a
O0

special case. In this direction the plane through the origin in k - space

perpendicular to the magnetic field has zero vertical component. Hence in

this direction at large kj the wave vector surfaces arch over until

Re k = 0 (fig 12). In this special case there is a sharp cutoff to
z

propagation. However, in general whenever the wave vector surface approaches

a plane through the origin perpendicular to the magnetic field (Re 6 o in

A31) the waves become non-propagating.
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(b) Strong .nnietic F ieId

is the magnetic field strength increases, the di :tance of the Al fvi-n

planes from the origin, e, /a, decreases. Any gravity mode wavt- vtctor

surface is restricted to lie between these planes, o, which magnet ic t esioi

provides all the needed acceleration. Hence the gra,.'itv :mode wav,' vct tr

surtace gets squashed (figs 13-15). Instead of a hvperlholoid, the wave

vector surfac, degenerates into two intersecting planes throulij the 'ri-.i: --

one p rp'endicular to th4e i:vlgnetiC field and the other _with k =.
z

critical frequ euv for both :,ero and large k, is tih< .ame in thLe st con,

i~t ~icit (, 20. and al A,.\5)

. C o

Hence a gravity wave slow mode cannot propagate in a stromn" mac..,net ic ' c ld.

e-cept for a small ranee of intermediate k'± and dire't on:-; nk:riy

!,erpe!ndicular the B - g plane (fig 16) or nearly vertica1l manetic il hI

(fig 17;. T'hese last two Iigures also clear I 1lt -t Li e dIeUtneriLico

-€ the wave vector surfaces at large k, into planles Lhrough1 the origin

perpendicular to th 0 magnetic field. Again KNe. k z ,n this plinn in th~Z

special direction perpendicular to the B - g plne.
.0

The wave vector surface of the second mode - the magnetic pressure

fast mode - remains a spheroid about the origin at low f'requency (i his 1>-15)

as at high frequency (fig 5). However, at low frequency this spheroid

attaches onto a plane through the origin perpendicular to the magnetic

field at large k,, rather than terminating as at high frequencieS. These

waves with large k._ have virtually all their energy in the form of magnetic

potential energy.
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(c) Conclusion

The significance of these results for solar heating are: First,

all low frequency waves (w < Ncose) in a strong magnetic field propagate

energy in the direction of Lhe magnetic field. Thus refraction will not

reduce the energy flux of low frequency waves. Second, the group velocity

of such waves may be greater than the Alfven speed. And third, the

magnetic energy density will be greater than the kinetic energy density.

Because of these last two results, the total wave flux will not be

observable in line widths or Doppler shifts. Hence current observations

do not place any restrictions on the flux of low frequency M.A.G. waves.

[.. . .
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Appendix: Limiting Cases

The local dispersion relation for magneto-acoustic-gravity waves
(neglecting gradients in the sound and Alfven speeds) is(McLellan and

Wnterberg, 1968)

4 2 ( +a2) k-2 iyg kJ

,2 2 (k . B )2 22

k + (y-l) gk (A)

2  (k . B) (g Bo)
~ 4 

TT=

where B is the ambient magnetic field, r, is the ambient density, k. is the
horizonVal component of the wave vector k, and y is the ratio of specific
heats. This dispersion relation is a fburth order equation for the complex
vertical component k of the wave vector in terms of the frequency andz
horizontal component k., which are real:

4 3 2
D = ak + bk + ck + dk + e = 0 (A2)

where

2 2 2
a = S a cos G

22 2 2
b 2s a k.cos~sine cost + iyga cos i

2 2 2 22 2 2 2 2
C + (sa a kJ (Cos sin()Cosos

+ iyg a 2 k., o s 1)s in tlc o s p

d = 2s2 a2 k 3 cos)sin~cos

-. 2 2 2 2
i yg, + iyg a k L cos20

4 2(2 2 2 4 2 2

e = w - w (s2 + a2
) k 2 + s2a sin 2cos 2

+ (y - 1) g 2k2 + iyga2kL 3 cosfsin cost. (A3)

0 is the polar angle between the magnetic field and the vertical and 4 is the
azimuthal angle between the horizontal projections of the magnetic field and
the wave vector-vertical plane.
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(I) High Frequency

For high frequencies, w>>g/s, gravity is negligible and the M.A.G. waves
become the well known MHD waves. The dispersion relation reduces to

4 2 9 2 k2 s2k2 (kBo__ -

w - e (s2 + a )k + s k = 0 (A4)

or

4 9 2 9 22

c - (s + a) + s a cos 0 0
kB

where c =W/k is the wave's phase velocity and 0kB is the angle between k
and B . The wave modes ir. this case are the usual fast and slow modes.
Their phase velocity is

2 2 (.2 2)2-'c + + + a

2 2 21 B
-4 s a cos 20B] (A5)

In the limits a:i>s or s>>a, the phase velocities are

C fast = C> + C< sin 0kB

lo2  c 2 2 kc l w = c< cos 0kB .,.

10
where c> = max (s, a) and c< = min (s , a) (set, for instance Bazer and

Fleischman, 1959.) In the weak field limit the fast mode is an acoustic
mode and the slow mode a magnetic tension mode, while in the strong field
limit the fast mode is a magnetic pressure -node and the slow mode a one
dimensional acoustic mode propagating along the magnetic flux tubes.

(ii) Vertical Propagation

For vertical propagation, k._ = 0, the dispersion relation reduces to
(Bell and Mein, 1971)

W _4 _(_2 La2+s2 i (A7

S) a2+s (1+--] (A7)

+ 2 s2 (1+ ) cos2e =O
kH
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where H P/pg = 2/yg is the pressure scale height in an isothermal atmosphere.
2 2

This is similar to the MHD dispersion relation, with s 2_, s (1 + i/kR). The

phase velocities are now a function of k
2 s2(

+2 a + s 1 + i/kH)c + =2

22

[(a 2 + .2)2 (2)2 + 2 ) + a2 )

) 2 2
- 4 (1+ acos (A8)

In the weak and strong field limits this becomes

2 = 2s2(l + i)os 2 2cfast = kk/ 1 kH ~ iOsa(A9)

2 2 2
= a 4-s (1 + -H) sin e a>>s

cslo 2 = ( )2 = a 2s 2 (l1 + i/kH)cos2 ea + s2 (1i 4 i/kH) 
(AlO)

= a cos e s>>a
2 i 2

= S (1 + -_) cos2e a>>s
kH

These can be solved for the wave vector k. Consider four cases separately.

(a) Fast mode with s>>a:

k2 (s2 + a 2sin2 6) + i(k/H) s 2  W = 0 (All)

2
sos

k - 2H s 2+ a2sin2e

+ W N ac2  s2 (A12)

s 2+a 2sin 2 L W s2+a2sin2 j

where N = yg/2s = s/2H.
ac

i j '
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fnhre is a cutof f requecy, below which the wave is tvanescent,

Cjcrit N acS/ Is 2 + a2si0 ci ,N~~ + a~2si - j (AlI3)

This mode is a cross between the acoustic branch of acoustic-gra\,itv waves
and t,, fast mode M111) wave. The stratification produc,-; the cutoff
frequcc- and a vertical amplitude growth (imaginary part of the wave
vectorJ. fle magnetic field reduces the cutoff frequency below N
and rt~. es the vertical growth rate below !/2H, their values for a, ou -
cr0'1tvwave5s

Slo " lnodL with s-' i

+ (A]..

his is the usual rna'n',Lic tens ion slow mode. (,rmvitv doCs not at: th
]Oi . -.

!')st P,.i t Wi t a- .

in the case where kl->s /a "

- 2 2 2 2
(a + s - in () + i(k/H) s sin ' - ,- = (',

5O
) )

+ 2H 2
a

2 N 2 2 1';
a 1- siac W si

This is a magnetic pressure mode slightly modified by gravity. There is
a small vertical growth in amplitude and a slight dependence of the phase
velocity on the direction of the magnetic field. There is no cu;of

frequency contrary to appearances, because as N Na- kH -s-'a- and

our initial assumption is no longer valid. Fhe case ot small kH must be
investigated separately.

I
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The special case kH < s 2/a2 corresponds to small frequencies, w/N < s/a.
In this case the vertical dispersion relation reduces to ac

() 3 ( 2 2 s2 a2 cos26 = O,
k -kkH wH

which can be written as a cubic equation for the wave vector

2 4H

3 W 2 i wH4 =0k - k 2 22 2 =  (A17)
a cos 0 a s cos e

In the limit of small w, the first and second terms dominate, and

k = + Wk acosO

If we include the first order correction, we find that the fast mode at very
low frequency in the strong field case is

+ - acose 8H (AI8)

-ac

The third root of the cubic is pure imaginary. This is a magnetic tension
mode and has no cutoff frequency.

(d) Slow mode with a>>s:

2 2 2 2 2 2k s cos 0 + i (k/H) s cos a- = 0,

c 
+ 1 N cos 2 _  

(A19)

2H - scose 1 2

This is an acoustic mode. Its phase velocity in the direction of B is the
sound speed. It grows in the vertical direction with the isual scale height of
2H. It has a cutoff frequency

ucrit Nac cosO. (A20)
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The case of a horizontal field must be treated separately. For 8 = 900 one mode
has zero phase velocity and the dispersion relation for the other mode
becomes

2 (a2 + 2 )k2 ik 2 0
2w 2 ia2 +s 2) k- -s =0,

H

5\ 2sos2 + "3 N_ ac __

k=- 2 2 -\ 2 -2 - __ ___2H a+s a +s W a +s

In this case the cutoff frequency is

2[
Wcrit = Na c -- 2[ a + 2 (A22)

and the vertical growth rate is reduced.

(iii) Large k.

In the limit of large k1 , that is k>> w/min(a,s) t~e dominant
terms in the dispersion relation are the terms of order k

4 22 2 3 22
k a s cos e + 2k k.a s cosesinecosZ z

+ 2 2 a 2s (cos 2 + sin 2ecos 2)

k3 2 2
+ 2k k3 a s cosOsinfcosp

(kz2 + k 2) (kzcosO + ksincos ) 2 2 2
= a s

s 2 k2 (t • §0
) 2

4=rp 0

=0. (A23)



-'30-

Hence either

k . B 0 0, (A24)
0

or

2 2 2
k =0, i.e. k =- k. (A25)

3
The next lower terms are the terms of order k3

, and the dispersion

relation is

9

(k. B )- (k Bo) (g "k- i-Yk 2  _ -. .o

4?r 4 1 2
O S

2 47 . B - iyg. 2]

0

= (k z + k ) (kz cos + k 7;in',cos:.)

k cosO + k sinEcost + icosO/H] a-

S(A.

The four roots are

(1) k B =0

or k -Ltancos (A27)

(2) k. B ° = i-y . Bo/s2

or

k = - kjtanecos - i/H (A28)

(3 and 4) 2  0

or k = + ik (A29)

ik

1I



The first two modes have wave vector surfaces that are planes perpandicular

to Po, while the last two are non-propagating2modes. For the first two

modes we can include the next lower order, k , terms in the dispersion

relation as a perturbation. The dispersion relation now becomes

k2 k. B I-B/21~

k 4
IP k. B - iyg B s4up -0 -o

0

22 k2 k2 2 +2 2 2

s

wnere N = (y - 10 g/S is the Brunt-Valsala the frequency of

oscillation of a fluid parcel in an isothermal atmosphere.

In component form

(kz2 + k 2 ) (kz cose + k± sinecos€)

x [kzcose + ksinecos4 + icos6/H]

2 a2 N2

2 2 s +a 2 2
z(k +kj 2 2 W + -2 kj =0. (A30)

sa a

Let us define 6 by

k = - kjtanfcos4 + 6. (A31)
z

then

k cosO + k sin~cos = 6cosO (A32)
z

and

k 2 = k (tan 2Ocos 2 + 1) - 26k~tanOcos.

z

The dispersion relation becomes (note 6- H 1 )

2 2 2 2 2 2
6 cos29 (6 + 1/H) - U) (a + s2 ) /a s

+ (N a2 ) / (tan 26cos 2 + 1) = 0.

_ ...i i
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Hence 2
____ s +a

+=12- 2 2 21

2H Co 2 a2 s2 4H 2L cos20 a s 4H2

N2  
i___ __ __ __

a 1- sin2esin2 ] 
(A33)

There exists a critical frequency

2 as o 6 1 N

e 2+s2 4H2  a 1 + tan 2 cos 2

2 2 +4 1!2

a2+s2  
+ 2 cos 2 0 • (A34)

a +s [H

The wave vector has a real part, 6cosO, parallel to the magnetic field for
W>u . However, for w < w , Re6 = 0 so the real part of the wave vector is
perpendicular to the magnetic field through the origin.

c2 ac Cos 20, (a>>s, independent of V'. (A35)

Note this is the same as the cutoff frequency (A20) of the slow acoustic
mode in the opposite limit, kL#O.

For a weak field,

2 2 "W c N / N (2 + tan~ Cos2 4)(s->a)

> N 2Cos-0. (A36)

In this case 6 has a real part for all if w>N, but only for t inside
a fan

cos> 2  /tan20

(A37)

if N>w>NcosO.
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Above the critical frequency
(for high frequencies or nearly horizontal B , cose=o)

2
S6 + W +a (A38)

2H - cosa 2
s-a

acosBi
+

scos) a>s

These are the usual MHD slow modes, but with the usual acoustic-gravity

exponential growth factor.

Below the critical frequency (w<<. ), with a>sC

= +i/H (A39)
t 2 1 - sin 2esin 2

Hence the wave-vector surfaces are planes through the origin and

perpendicular to B

Below the critical frequency ( w. « ) with s>ac

6 =+ i N I - i (A40)
-2 a 1 n 2H( - sin95sin )

where

N _ 1 s y-l
a H d 2

Y

Again the wave-vector surfaces are planes through the origin perpendicular

to B()
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(iv) Horizontal Magnetic Field

When the magnetic field is horizontal, the dispersion relation reduces
to a quadratic in k (since cosO = 0)z

4 _ w2  L(s2 + a2) k2  iyg.k]

+ (N2 + a2k 2 ) s2k.
2

_ 02 (s2 + a
2 ) + s2 a2k

2 cos2 j kz
2

- iyg W 2 k

+ [.04 _ 2 (s2 + a 2)k 2 + s2a2 k 4 + N2s2k2J

= 0 (A41)

For small kjand for all kkat high frequencies this2 re uces2 to the usual

acoustic - gravity dispersion relation, but with s 2s + a 2

2 2 2 2 2W (s + a2 ) k + iygw k
Z z

[w4 _ 2 (2 + a2 )kj2 + N2s2k±2] =

The vertical component of the wave vector is

- s Q 2  412 s) ]

_,2s -2 2
+2 2 2 j

w2 s +a

(A42)

ilk .
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There are acoustic or magnetic pressure waves in the high frequency limit

and a modified gravity wave in the low frequency limit. The critical
frequencies are

(Na 3 (22 (A43)

so both are reduced by the magnetic field.

For larger kI and low frequencies the dispersion reduces to

2 (s a2 )  k 2 +k 2 2 2 2 2 ?
- w + + k aska + N_ s kk = 0.

This is the same as the magneto-gravity dispersion relation
(for horizontal B )

2 k2 k2a2 2 2
- 2 k + k a + N2k = 0,

but with
" 2

2 2 s2+a

2
S

Compare fig. 14 with Schwartz and Stein (1975) fig 3b.

The vertical component of the wave-vector is

N 2 s 2

k 2= s-+a I k 2 (A44)
z 2 k 2 s a 2

S +a

2 s2-a 2

Hence k z = for k = w 2 2 and is real for smaller k and w below the
z~ 2

critical frequency. s a
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V. "MODAL" CODE

We wish to study the generation, propagation, and dissipation of magneto-

9coustic-gravity waves in order to determine their role in chromospheric and

coronal heating, as well as to determine any possible signatures of different

waves on line profiles. These waves are inherently three-dimensional and

three-dimensional nonlinear MHD calculations require large amounts of computer

time. We are therefore developing a method of reducing the three-dimensional

calculations to one dimension. The essence of this "modal" method is to

assume that the mean state of the atmosphere is horizontally uniform then separate

all the fluid variables into mean and fluctuating parts, and expand the fluctuating

parts in a complete set of horizontal planforms. The crucial approximation

is to truncate this expansion at only a single hexagonal horizontal planform,

which then leaves us with a system on one-dimensional Eulerian partial-differential

equations for the mean variables and the amplitude of the fluctuating variables.

For example, scaler variables are expanded like the density

p( ,t) = p (z,t) + R (z,t) f (x,y)

where P is the mean and Rf the fluctuating part of the density and f is the

hexagonal planform

6
f(xy) ik..x

i=l

whe(r, S is t length (o a s o

where S is the length of a side of the hexagon.



Vector variables are expanded like the velocity in terms of scaler potentials,

-1

a f f (x,y) U (z,t) + f y(x,y) i (z,t))

V(r,t) = V(Z,t) + a f y(X,y) U (z,t) - x(X, ) 1, (Zt)i

f(x,y) W(z,t)

These hexagonal horizontal plan forms are shown in Figure 19. We have imposed

this fixed horizontal structure on the fluid flow. These 1-mode expansions

are substituted in the equations of motion, which are separated into horizontally

averaged and fluctuating parts. For example, the continuity equation becomes

)P D
t V v P v ) + - - (RW ) : 0

aR 1 -7
+-- + Rz W + CRW) = a ( U + CIRU)

where

C fff = 214-

S + C i
C 1  a -2  f [ f fxf + f f y C 1 -

The advantage of this method is that we have included the horizontal velocities

and a crude representation of the horizontal variation of the motion, while

retaining some of the non-linearcoupling because we use hexagonal planforms,

and still have only a one dimensional system of equations. The disadvantage

is that the horizontal strucutre is imposed and does not correspond to the

actual fluid flow. It can, however, be throught of as a standing wave pattern

produced by six waves propagating in an hexagonal "pattern".

The modal equations are solved by dividing the atmosphere into a grid

of layers and transforming the partial differential equations to finite difference

equations on the spatial grid. We solve the finite difference equations using

a two step Lax-Wendroff method (Richtmyer and Morton, 1969) with "Flux Corrected
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Transport" to introduce additional dissipation to stabilize the scheme (Book,

Boris, Hain, 1975). We use the full one-dimensional non-linear Eulerian equations

to test the solution scheme. At the moment there is a problem with the FCT

scheme at the boundary in a stratified atmosphere. We have tested the modal

scheme for (a) one-dimensional piston driven shocks. These show the correct

steepening and shock formation, but a bad post shock profile with a kink in

the saw tooth profile. (b) We are now calculating waves in an isothermal

gas, so only the continuity and momentum equations need to be solved, in order

to try and isolate the problem.
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FIGURE CAPTIONS

Fig. 1 Chromospheric Resonance: Velocity Amplitude at the temperature

minimum for a given driving piston amplitude, V= 3 x 10- 3 x soundp

speed, as a function of driving piston period.

Fig. 2 Modes: Kinetic energy density in the fundamental and harmonic

modes as a function of heighi.

Fig. 3 Transition region flux as a function of driving piston period

for a given driving piston amplitude, V = 3 x 10-3 x sound speed.P

Fig. 4 Transition region flux as a function of driving piston amplitude

for driving piston periods of 150 and 300 seconds.

Fig. 5 Wave vector surface at high frequency, f = )/N 1.1, in a stronga C

magnetic field, a/s = 3.1.6. The axes are k , k , k and fullx y Z

scale along each axis is +0.75/14, where H is the pressure and

density scale height. The magnetic field lies in the plane of the

paper at an angle = 300 to the vertical in this and all

subsequent 3-dimensional pictures of the wave vector surface,

except figure 14. The spheroid in the center is the magnetic

pressure fast mode an the planes are the acoustic slow mode

propagating along the magnetic flux tubes.

Fig. 6 Wave vector surface at high frequency, f = w/Na = 1.1, in a weakac

magnetic field, a/s = 0.707. Full scale along each axis is

+ 1.5/H. The spheroid in the center is the acoustic fast mode and

the planes are the magnetic tension slow mode.

Fig. 7 Slice through the wave vector surface at high frequency, f = W/N
] c

= 1.0, in a strong magnetic field. The axis are the real part

of the vertical, Re k , and the horizontal, kH., components ofz f

the wave vector -in units of the reciprocal of the scale height,

H - . The magnetic field direction is 0 = 45 to the vertical

and = 450 to the plane of the paper.
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Fig. 8 (a) Slice through the wave vector sir! Ah at high Icqucn 1

f = a/N = 1.0, in a weak magnetic field.
ac

(b) [maginary part of the vertical component of the wave vector,

Im k , along, the same sI ick a, Hig. 4a. U'nits are it
1

Fig. 9 (a) Wave vector surldttc 0t the gravity fast mod, at low tqu,_n<

f = w/N = 0.5, in a weak magnetic field.
aic

(b) Wave vector surface of the magnetic tension slow mode. In bothi

cases full scale along each axis is + 2/1H.

Fig. 10 (a) Slice through wave vector surface at low trequency, I .,/N
:4(

= 0.5, in a weak magnetic field.

-]
(b) Imaginary part of k along the same slice. Units are H7

and p give the direction of B.
0

Fig. 11 (a) Slice through wave vector surface at low frequency, t ... iN

0.5, in a nearly vertical, 6 = 5 , magnetic field.

- I
(b) Imaginary part of k along the same slice. Units are Ii

Fig. 12 (a) Slice through wave vector surface at low frequency, f = /N

0.5, in a weak magnetic field perpendicular to the B - g plane,
0

0
90° .

-1
(b) Imaginary part of k along the same slice. Units are HI

Fig. 13 (a) Wave vector surface of "slow gravity mode" at low frequency.

f = /N = 0.5, in a moderate magnetic field.a c

(b) Wave vector surface of magnetic "fast" mode in same case. Full 1

scale along each axis is + 1/1i.
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Fii7. 14 Wave vector surface at low t requL-ncv, I / .!N . 5, in a strong

magnetic field. Bulge is magnet i c pr'ssi rt, t at mode. Other mode

is a plane through origin. Full scale along tajch axis is + 0. 1/H.

Fig. 15 (a) Slice through wave vector surface at low fre quency,

f = u/N = 0.5, in a strong field.
-l

(b) Imaginary part of k along the same slice. Units are HZ

Fig. 16 (a) Slice through wave vector surface at low frequency,

f = u/N = 0.5, in a strong magnetic field, in a direction
a c

perpendicular to the B -g plane, 9(.
O

(b) Imaginary part of k along the same slide. Units are H -
z

Fig. 17 (a) Slice through the wave vector surface at low frequency

f = u/N = 0.5, in a nearly vertical, 0 = 5° , strong magneticac ,stogmgei

field.

(b) Imaginary part of k along the same slice. Units are H -
Z

Fig. 18 Wave vector surface for nearly horizontal magnetic field, O= 850,

at frequency, f = w/N = 0.5, in a moderate magnetic field.
ac

The cutoff frequency in this case is N s/(s 2 + a2 0.58 N
ac ac.

The inner fast mode surface is similar to the magneto-gravity

mode surface. (Schwartz and Stein, 1975 fig. 3b).

,ig. 19 Hexagonal planform f(x,y).
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